1、定義:在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等于斜邊長的平方。如果設(shè)直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那么可以用數(shù)學(xué)語言表達(dá):a2+b2=c2。
2、公元前十一世紀(jì),周朝數(shù)學(xué)家商高就提出“勾三、股四、弦五”?!吨荀滤憬?jīng)》中記錄著商高同周公的一段對話。商高說:“…故折矩,勾廣三,股修四,經(jīng)隅五。”意為:當(dāng)直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以后人們就簡單地把這個事實說成“勾三股四弦五”,根據(jù)該典故稱勾股定理為商高定理。
公元三世紀(jì),三國時代的趙爽對《周髀算經(jīng)》內(nèi)的勾股定理作出了詳細(xì)注釋,記錄于《九章算術(shù)》中“勾股各自乘,并而開方除之,即弦”,趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。后劉徽在劉徽注中亦證明了勾股定理。